Video Semantic Analytics and Visualization

Tong Li

TongLi97.github.io

ZJUTVIS Lab

Zhejiang University of Technology

Outline

Background

Multimedia Data

Video Data

Visual Analytics

□ Related Papers

Media Video Vis

Entertainment Video Vis

D Sport Video Vis

Medical Video Vis

G Surveillance Video Vis

D Summary

D Surveillance Video

D Summary

Goals and Challenges

Video Understanding

Related Papers

Multimedia Data

- Visual data
- Audio data
- **Text** data
- **Sensor data**
- **D** Other data

Background $\bigcirc \bullet \bigcirc$

Related Papers

Video Data

Background O O

Related Papers

Video Analytics

Low Level Vision Optical Flow Estimation Image Segmentation Feature Extraction

.

High Level Vision Detection, Recognition, Tracking ······

Outline

Background

- Multimedia Data
- Video Data
- Visual Analytics

Related Papers

- Media Video Vis
- **D** Entertainment Video Vis
- **D** Sport Video Vis
- Medical Video Vis
- **D** Surveillance Video Vis
- **D** Summary
- Surveillance Video
 - **D** Summary
 - **Goals and Challenges**
 - Video Understanding

Surveillance Video

(3)

Media Video Vis

Purpose

Risk assessments on e-commerce videos.

Target User

Video Reviewer

Data

E-commerce Video Data: Visual and Audio

(1) Video Frame

(2) Audio Content

T. Tang, Y. Wu, et al. "VideoModerator: A Risk-aware Framework for Multimodal Video Moderation in E-Commerce." IEEE Transactions on Visualization and Computer Graphics, 2021.

Media Video Vis

(1) Overview

T. Tang, Y. Wu, et al. "VideoModerator: A Risk-aware Framework for Multimodal Video Moderation in E-Commerce." IEEE Transactions on Visualization and Computer Graphics, 2021.

Media Video Vis

Cons

There is a lack of detailed descriptions of Risk Tags and Risk Words. The accuracy of model is not mentioned. It would be better to draw a pipeline for data processing. Waste of pixel space.

Entertainment Video Vis I

Purpose

Explore, understand, and search movie content through the angle of emotion.

Target User

Audience and Editor

Data

Users' assessments of movies - Subjective

Characters' facial expression based on deep learning - Objective

Solution

Visualization

(1) Emotional Model

(4) Characters Emotion

C. Ma, et al. "EmotionMap: Visual Analysis of Video Emotional Content on a Map." Journal of Computer Science and Technology, 2020.

Entertainment Video Vis I

Cons

The preliminary evaluation work was not described in detail. The method of dividing the video into events is not mentioned. There is no correlation between the two kinds of sentiment data.

C. Ma, et al. "EmotionMap: Visual Analysis of Video Emotional Content on a Map." Journal of Computer Science and Technology, 2020.

Entertainment Video Vis II

Purpose

Analyze key factors of an inspirational speech and quantitatively evaluate the effectiveness of the factors.

Target User

Speakers and Speech Experts

Data

Speech Video, Script, Metadata, Information(Region, Year, Level …) Feature Emotional Data(Facial, Text, Audio) Non-emotional Data

Factors List

Factor	Modality	Type(p-value)	Type(p-value)
	Facial	Arousal(0.006*)	Valence(0.431)
Average	Textual	Arousal(0.215)	Valence(0.088)
	Vocal	Arousal(0.016*)	Valence(0.017*)
	Facial	Arousal(0.020*)	Valence(0.006*)
Factor Average Volatility Diversity Final Coherence Ratio Pauses Vocabulary	Textual	Arousal(0.433)	Valence(0.438)
	Vocal	Arousal(0.235)	Valence(0.845)
Diversity	Facial	Across Emotion	n Type(0.120)
Final	Facial	Arousal(0.002*)	Valence(0.020*)
Coherence	All	Arousal(0.124)	Valence(0.051)
		Happy(0.001*)	Sad(0.0736)
Datia	Essial	Fear(0.582)	Angry(0.292)
Katlo	Facial	Surprise(0.115)	Disgust(0.306)
		Neutral(0.488)	-
Pauses	Vocal	Pauses(0.271)	-
Vocabulary	Textual	Vocabulary(0.089)	-

(2) Factors List

K. Maher, et al. "E-ffective: A Visual Analytic System for Exploring the Emotion and Effectiveness of Inspirational Speeches." IEEE Transactions on Visualization and Computer Graphics, 2021.

Entertainment Video Vis II

SolutionVisualization

K. Maher, et al. "E-ffective: A Visual Analytic System for Exploring the Emotion and Effectiveness of Inspirational Speeches." IEEE Transactions on Visualization and Computer Graphics, 2021.

Entertainment Video Vis II

Cons

The definition of *Valence* and *Arousal* is not explained. The accuracy of model is not mentioned.

> K. Maher, et al. "E-ffective: A Visual Analytic System for Exploring the Emotion and Effectiveness of Inspirational Speeches." IEEE Transactions on Visualization and Computer Graphics, 2021.

Sport Video Vis

Purpose

Analyze soccer videos to help analysts gain insights into player behavior and team tactics.

Target User

Team Sport Analysts
Data

Soccer Match Video

(1) Visual Analysis

M. Stein, H. Janetzko, et al. "Bring it to the pitch: Combining Video and Movement Data to Enhance Team Sport Analysis." IEEE Transactions on Visualization and Computer Graphics, 2017. Related Papers O O O O O O O

Sport Video Vis

Solution

Player Detection, Ball Detection
Player Trajectory
Visualization

(1) Overview

M. Stein, H. Janetzko, et al. "Bring it to the pitch: Combining Video and Movement Data to Enhance Team Sport Analysis." IEEE Transactions on Visualization and Computer Graphics, 2017.

Sport Video Vis

Cons

The tasks of domain experts are not rich enough. Event-based analysis is relatively simple. Color design conflicts.

> M. Stein, H. Janetzko, et al. "Bring it to the pitch: Combining Video and Movement Data to Enhance Team Sport Analysis." IEEE Transactions on Visualization and Computer Graphics, 2017.

Medical Video Vis

D Purpose

Study the muscle activity patterns of patients with brachial plexus injuries.

Target User

Doctor

Data

Muscle Signals, Motion Data, Video Record

Solution

Visualization

(1)

G. Chan, L.G. Nonato, et al. "Motion Browser: Visualizing and Understanding Complex Upper Limb Movement under Obstetrical Brachial Plexus Injuries." IEEE Transactions on Visualization and Computer Graphics, 2019.

(3)

Surveillance Video Vis

Purpose

Analysis of cheating behavior in online exams.

Target User

Teacher

Data

Mock Online Exam

Cheating Types: Local Environment, Computer

Webcam Video Data ---> Abnormal Head Movement

Mouse Movement (JavaScript Plugin) ---- Abnormal Mouse Movement

(1) Head Pose

(2) Mouse and Head Movement

H. Li, M. Xu, et al. "A Visual Analytics Approach to Facilitate the Proctoring of Online Exams." Proceedings of the CHI Conference on Human Factors in Computing Systems. 2021.

Surveillance Video Vis

Solution

Abnormal Head Movement Detection: Face Disappearance, Abnormal Head Pose Abnormal Mouse Movement Detection: Blur, Focus, Copy, Paste, Mousemove, Mousewheel Overall Risk Estimation

Visualization

Cons

(1) Overview

H. Li, M. Xu, et al. "A Visual Analytics Approach to Facilitate the Proctoring of Online Exams." Proceedings of the CHI Conference on Human Factors in Computing Systems. 2021.

Backgro	bund		Rel	ated Pape	ers () ()	$) \circ \circ$	00			Surveil	lance Video	
Summar	y iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii											
	Μ	ledia	Entertainment			Sport		Medi cal	Surveillance			
	John et al.	Tang et al.	Ma et al.	Wu et al.	Zeng et al.	Maher et al.	Stein et al.	Chen et al.	Chan et al.	Lee et al.	Zeng et al.	Li et al.
Info Meta	2019	2021	2020	2018	2019	2021	2017	2021	2019	2019	2020	2021
	SCI IV	TVCG	SCI II	TVCG	TVCG	TVCG	TVCG	TVCG	TVCG	TVCG	TVCG	СНІ
	1	0	2	12	17	0	90	3	5	29	18	5
				<u>ج</u>]					پې ۱			🖸 è
Data-Source	News	E-commerce	Movie	TED	TED	Speech Contest	Soccer Match	Table tennis Match	Video	Traffic Video	Classroom Video	Examination Video
Data-Multimodal												
Model-Usage												
Model-Accuracy												
Research Focus		\bigtriangledown	\bigtriangledown				\bigtriangledown		\bigtriangledown			

Outline

Background

Multimedia Data

Video Data

Visual Analytics

□ Related Papers

Media Video Vis

Entertainment Video Vis

D Sport Video Vis

Medical Video Vis

D Surveillance Video Vis

D Summary

Given Surveillance Video

D Summary

Goals and Challenges

Video Understanding

Summary

Manual Inspection: Labor-intensive Tasks

□ Machine Intelligence: Inaccurate Results

Surveillance Video

Analytics Target

Reduce the time of watching videos. Understand video with low cost.

Data Challenge

Big Data、Uneven Quality Noise Data Loose Structures or Without Story Units

Visualization Challenge Limited pixel space.

Video Understanding based on Action Recognition

Action Recognition

It is difficult to precisely define the boundary and length of the action. The accuracy is difficult to reach 100%.

It is not possible to label all human actions.

run/jog walk jump stand sit lie/sleep bend/bow crawl swim dance get up fall down crouch/kneel martial art	talk to watch listen to sing to kiss hug grab lift kick give/serve to take from play with kids hand shake hand shake hand wave fight/hit push	lift/pick up put down carry hold throw catch eat drink cut hit stir press extract read write	smoke sail boat row boat fishing touch cook kick paint dig shovel chop shoot take a photo brush teeth clink glass	work on a computer answer phone climb (e.g., mountain) play board game play with pets drive (e.g., a car) push (an object) pull (an object) play musical instrument text on/look at a cellphot turn (e.g., screwdriver) dress / put on clothing ride (e.g., bike, car, hor watch (e.g., TV)	open close enter exit t one se)
位置(14)	人-人 (17)	人─物体	(49)		

Event Understanding

Normal or abnormal / Key or Universal (Vaguely Define) "Key events" accounted for a relatively low proportion.

AVA Actions Dataset

Anything abnormal?

a. Clearly Define

References

[1] M. John, K. Kurzhals and T. Ertl. "Visual Exploration of Topics in Multimedia News Corpora." Proceedings of International Conference Information Visualization. 2019.

[2] T. Tang, Y. Wu, et al. "VideoModerator: A Risk-aware Framework for Multimodal Video Moderation in E-Commerce." IEEE Transactions on Visualization and Computer Graphics. 2021.

[3] C. Ma, J. Song, et al. "EmotionMap: Visual Analysis of Video Emotional Content on a Map." Journal of Computer Science and Technology. 2020.

[4] A. Wu and H. Qu. "Multimodal Analysis of Video Collections: Visual Exploration of Presentation Techniques in TED Talks." IEEE Transactions on Visualization and Computer Graphics. 2018.

[5] H. Zeng, X. Wang, et al. "EmoCo: Visual Analysis of Emotion Coherence in Presentation Videos." IEEE Transactions on Visualization and Computer Graphics. 2019.

[6] K. Maher, Z. Huang, et al. "E-ffective: A Visual Analytic System for Exploring the Emotion and Effectiveness of Inspirational Speeches." IEEE Transactions on Visualization and Computer Graphics. 2021.

[7] M. Stein, H. Janetzko, et al. "Bring it to the pitch: Combining Video and Movement Data to Enhance Team Sport Analysis." IEEE Transactions on Visualization and Computer Graphics. 2017.

[8] Z. Chen, S. Ye, et al. "Augmenting Sports Videos with VisCommentator." IEEE Transactions on Visualization and Computer Graphics. 2021.

[9] G. Chan, L.G. Nonato, et al. "Motion Browser: Visualizing and Understanding Complex Upper Limb Movement under Obstetrical Brachial Plexus Injuries." IEEE Transactions on Visualization and Computer Graphics. 2019.

[10] C. Lee, Y. Kim, et al. "A Visual Analytics System for Exploring, Monitoring, and Forecasting Road Traffic Congestion." IEEE Transactions on Visualization and Computer Graphics. 2019.

[11] H. Zeng, X. Shu, et al. "EmotionCues: Emotion-oriented Visual Summarization of Classroom Videos."

IEEE Transactions on Visualization and Computer Graphics. 2020.

[12] H. Li, M. Xu, et al. "A visual Analytics Approach to Facilitate the Proctoring of Online Exams." Proceedings of CHI Conference on Human Factors in Computing Systems. 2021.